Applied Probability \& Statistics

1. A random sample of size $n=16$ has sample mean $\bar{x}=82.1$ and sample variance $s^{2}=9.61$. The population is normal with mean and standard deviation μ and σ^{2} respectively.
Find 90% confidence intervals for:
(a) μ, given that $\sigma=3.0$;
(b) the 90 -th percentile of the population, $\mu+z .9 \sigma$, given that $\sigma=3$;
(c) μ, when σ is unknown;
(d) σ.
2. What is the minimum sample size you would recommend in order to estimate, with 95% confidence:
(a) the mean of a normal population to within 1.0 when (i) $\sigma=3$; (ii) $\sigma=30 ;$
(b) a population proportion, p, to within 0.02 when (i) no information about p can be assumed; (ii) it is known that $p \leq 0.15$.
3. How large a sample is required to estimate a standard deviation, σ, of a normal population in order to be 90% confident that σ is underestimated by at most 12% ? (i.e. the estimator $\hat{\sigma}$ must satisfy $\sigma \leq 1.12 \widehat{\sigma}$ with probability 0.90.)
4. A random sample of 20 lifetimes of electronic components has mean 112.1 days. Find a 90% confidence interval for the mean lifetime μ :
(a) assuming the lifetimes to be normally distributed, and the standard deviation is: (i) known to be 13.2 days; (ii) estimated from the sample as 13.2 days;
(b) assuming the lifetimes have a gamma distribution with $\kappa=3$ and unknown parameter θ.
Notes: If F is the cumulative distribution function for a χ^{2}-distribution with 120 degrees of freedom then $F(95.705)=0.05$ and $F(146.567)=0.95$.
5. The tensile strength, y, of a high-powered copper coil is believed to be normally distributed with mean μ and standard deviation σ. A sample of 14 high-powered copper coils yields the following tensile strength values (in units of kilogram per square centimetre):
$\begin{array}{llllllllllllll}429 & 187 & 247 & 305 & 218 & 366 & 253 & 246 & 379 & 296 & 227 & 198 & 280 & 259\end{array}$
The sample mean and standard deviation are $\bar{y}=277.86$ and $s=71.066$, respectively.
(a) Find a 90% confidence interval for the mean tensile strength assuming: (i) $\sigma=65 \mathrm{~kg} / \mathrm{cm}^{2}$; (ii) σ is unknown.
(b) Find a 90% confidence upper bound for σ.
(c) Taking the upper bound in (b) as an estimate of σ, what size sample would be required to estimate μ to within $20 \mathrm{~kg} / \mathrm{cm}^{2}$ with 90% confidence?
6. Arrivals of customers at a filling station are modelled as a homogeneous Poisson process with a rate of λ arrivals per hour, so that the number of arrivals in the interval $[0, t]$ has a Poisson distribution with mean $\mu=\lambda t$.
(a) Show that the time to the second arrival has a $\operatorname{gam}(\theta, 2)$ distribution, where $\theta=1 / \lambda$.
Note: See notes for explanation of the parametrisation.
(b) The arrival rate is known to be $\lambda=40$ arrivals per hour. Each arrival is recorded with probability 0.1, independently of previous arrivals or recordings. Find the probability that at most 2 arrivals are recorded in the first hour.
(c) If 20 successive inter-arrival times have a mean of 2 minutes, find a 90% confidence interval for the arrival rate λ.

This is the final problem sheet. Solutions to all questions should be handed up on Thursday 23rd November 2006

